PupilNet: Convolutional Neural Networks for Robust Pupil Detection

نویسندگان

  • Wolfgang Fuhl
  • Thiago Santini
  • Gjergji Kasneci
  • Enkelejda Kasneci
چکیده

Real-time, accurate, and robust pupil detection is an essential prerequisite for pervasive video-based eye-tracking. However, automated pupil detection in real-world scenarios has proven to be an intricate challenge due to fast illumination changes, pupil occlusion, non centered and off-axis eye recording, and physiological eye characteristics. In this paper, we propose and evaluate a method based on a novel dual convolutional neural network pipeline. In its first stage the pipeline performs coarse pupil position identification using a convolutional neural network and subregions from a downscaled input image to decrease computational costs. Using subregions derived from a small window around the initial pupil position estimate, the second pipeline stage employs another convolutional neural network to refine this position, resulting in an increased pupil detection rate up to 25% in comparison with the best performing state-of-theart algorithm. Annotated data sets can be made available upon request.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PupilNet v2.0: Convolutional Neural Networks for CPU based real time Robust Pupil Detection

Real-time, accurate, and robust pupil detection is an essential prerequisite for pervasive video-based eye-tracking. However, automated pupil detection in realworld scenarios has proven to be an intricate challenge due to fast illumination changes, pupil occlusion, non-centered and off-axis eye recording, as well as physiological eye characteristics. In this paper, we approach this challenge th...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.04902  شماره 

صفحات  -

تاریخ انتشار 2016